Bacterial aerobic Bacteraemia at AL- Kindi Teaching Hospital 2007-2009: Etiology diversity, Clinical features, and Outcome.

البكتريا الهوائية المسببة لتجرثم الدم في مستشفى الكندي للفترة من 2007 ولغاية 2009 الاسباب المؤدية ومتغيراتها ، المظاهر السريرية والمحصلة النهائية

Mazin K. Ameen	[*] Khawlah J. Khalaf	[*] Suzan I. Majeed			
Department of Microbiology AL-Kindi Teching Hosital					
* Department of Biology/ AL- Mustansiriya University					
سوزان اسماعيل مجيد	*خولة جبر خلف	مازن قیس امین			
قسم الاحياء المجهرية / مستشفى الكرَّبي التعليمي					
	*قسم علوم الحياة /كلية العلوم/الجامعة المستنصرية				

Abstract

 \mathfrak{D} ata regarding the incidence, etiology and outcome of Bacteraemia taken from AL-Kindi hospital were collected, and compared the situation between the three years: 2007, 2008, 2009. A total number of blood samples was (505), from this number only (70) (13.8%) is positive. The rate of positivity was significant greater in 2009 (17.7%) than 2008 (11.8%) and 2007 (9.1%). The calculated incidence of significant episodes of bacteraemia was 12.6% .The five most commonly isolated microorganisms were: Salmonella typhi30(46.8%), Staphylococcus aureus 12 (18.7%), Escherichia coli 10 (15.6%), Klebsiella 4(6.2%) and Enterobacter sp.3(4.6%) varied throughout this period, significant increase was noted in 2009. The acquisition of blood stream infections was nosocomial in 8.5% of cases.60% of Salmonella typhi were Amoxicillin resistant. Also Staph.aureus isolates, 58% were resistant to Amoxicillin and Erythromycin. Cephalexin-resistant E.coli in70% of the isolates and Gentamycin-resistant Klebsiella occurred in 75% of the isolates. The incidence of BSI did not differ significantly from other reported studies.

المستخلص

جمعت المعلومات عن حوادث اصابات تجرثم الدم من مستشفى الكندي وقورنت تلك الحالة بين السنوات الثلاثة 2007 ، 2008 و 2009 . مجموع عينات الدم كانت 505 عينة في تلك السنوات وكانت فقط 70 الثلاثة 2008 ، 2007 يندة موجبة للفحص . متثلت النسبة الاعلى في سنة 2009 (17,7%) بينما في سنة 2008 كانت (13,8%) عينة موجبة للفحص . تمثلت النسبة الاعلى في سنة 2009 (17,7%) بينما في سنة 2008 كانت (13,8%) عينة موجبة للفحص . تمثلت النسبة الاعلى في سنة 2009 (17,7%) بينما في سنة 2008 كانت (13,8%) عينة موجبة للفحص . تمثلت النسبة الاعلى في سنة 2009 (17,7%) بينما في سنة 2008 كانت (13,8%) وفي سنة 2007 كانت (14,8%) اما مجموع الحوادث المهمة لتجرثم الدم فتمثلت بنسبة 30 Salmonella typhi في تجرثم الدم هي 30 (12,6%) ، الاحياء المجهورية الخمسة المهمة في تجرثم الدم هي 30 (12,6%) ، الاحياء المجهورية الخمسة المهمة في تجرثم الدم هي 102.8% (13,8%) ، 2008 (14,8%) ، 2008 كانت منابة تجرثم الدم Bacteraemia كانت مقاومة لمضاد الاموكسيلين ومن في عام 2009 . اما حالات تجرثم الدم Bacteraemia كانت مقاومة لمضاد الاموكسيلين والايرثروماسين . مقاومة من الحالات . 60% من عزلات بكتريا Bacteraemia تنوبة من المستشفى فشكلت نسبة 2,8% عزلات بكتريا رومان قل عزلات بنسبة 30% مقاومة لمضاد الاموكسيلين والايرثروماسين . مقاومة مضاد الاموكسيلين والايرثروماسين . مقاومة مضاد الاموكسيلين والايرثروماسين . مقاومة المضاد الاموكسيلين من قبل عزلات يمان ما قراد تجرثم الدم في هذه الدراسة لاتخليسين من قبل عزلات بكتريا للما يما مع ما مالما لا مولات بنسبة 5% و مقاومة الدراسة لاتختلف عن الحوادث في الدراسات . 80% مالما مال مال مالما يما مع مال عزلات . 20% مالما مالما مع مالما مالم من مالما مالما يسبة 5% مالما مالمالما مالما مالما مالما مالما مالما مالما مالما مالمامما مالما مالما مالمما مالما مالما

Introduction

Microorganisms present in the circulating blood whether continuously intermittently are threat to every organ in the body. Approximately 200,000 cases of bacteraemia and fungemia occur annually with mortality rates ranging from 20-50% [1]. Therefore early diagnosis and appropriate treatment of these infections can make the difference between life and death [2]. Since early 1950s, there is striking increase in incidence of bacteraemia caused by members of Enterobacteriaceae and other gram negative bacilli [3]. During the last years, most authors have focused on special aspects of BSI, such as bacteraemia involving specific microorganisms [4]. Furthermore the number of longitudinal studies is limited [5]. This search reports the microbial etiology, clinical characteristics, and outcome of 64 episodes of BSI in AL-Kindi Hospitals during the 3-years from 11 January 2007 through 23 December 2009. BSI surveillance is the cornerstone of prevention and control since it facilitates the development of appropriate intervention measures and helps to evaluate their efficacy [6, 7].

Material and Methods:

Blood culture

Venous blood 5ml was obtained aseptically and inoculated into brain heart infusion broth. Blind subculture was done on to fresh 5% sheep blood agar and MacConkey's agar. Negative result was followed up by examining the broth daily and doing final subculture at the end of 7th day or at the appearance of turbidity. Organisms were identified by cultural characters, morphology and standard biochemical tests [8].

- Susceptibility testing

During the 3 years of this study the antibiotic susceptibility testing was performed by the Kirby -Bauer disc diffusion method as per NCCLS recommendation [9].

The list of antimicrobials (Oxoid – England) included: Penicillin $(10\mu g)$, Ampicillin $(10\mu g)$,Gentamycin $(30\mu g)$, Cefotaxime $(30\mu g)$, Meropenenm $(10\mu g)$, Augmentine $(30\mu g)$, Trimethoprin + sulfonamides $(25\mu g)$, Erythromycin $(15\mu g)$, Amikacin $(40\mu g)$, Ampiclox $(25\mu g)$, Amoxicillin $(25\mu g)$, Ciprofloxacin $(10\mu g)$, Ceftriaxone $(30\mu g)$, Tobramycin $(10\mu g)$, Cephalexin $(30\mu g)$, and Chloramphenicol $(30\mu g)$.

Predisposing factors to bloodstream infection:

Medicin, outpatient, burns, dialysis, Neurosurgery, central care unit and Respiratory care unit.

- Statistical analysis:

We expressed continuous variables as the mean and standard deviation (SD), and discrete variables as percentages.

Results

The total number of blood samples obtained for blood culture during three years was 505 Table (1). In 2007 a blood sample for blood culture was 142. In 2008 was 127 and in 2009 was 236, being significantly higher at 2009 than other years. The rate of positivity was significantly greater in 2009 (17.3%) than 2007 and 2008 (7.7%, 9.4%) respectively.

2012

Table (1): Microbiology Workload in 2007-2009					
2007	2008	2009	Total		
142	127	236	505		
13	15	42	70		
9.1%	11.8%	17.7%	13.8%		
11	12	41	64		
	00000000000000000000000000000000000000	2007 2009 2007 2008 142 127 13 15 9.1% 11.8% 11 12	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		

Microbiology data

The number of microorganism isolated from significant episodes of bacteremia was 64. The etiology of the episodes is summarized in table(2). The five most commonly isolated microorganisms were: Salmonella typhi, S. aureus, E. coli, Klebsilla and Enterobacter were accounting for 46.8%, 18.7%, 15.6%, 6% and 4.6% respectively. When only 1.5% for each one of these bacteria: Streptococcus $(\beta_{hemolysis})$, Acinetobacter baumanii, Aerococcus viridans, Pseudomonas and Stenotrophomonas maltophilia. Out 64 isolates 51(79.6%) were gram negative bacilli while 13 (20.3%) were gram positive bacteria shown in the table(3). S. epidermidis bactereamia occurred mainly in patients was associated with nosocomial infection (8.5%).

Table (2): most frequent isolates

Bacteria	(n=11)	(n=12)	(n=41)	(n=64)
Salmonella typhi	8	2	20	30(46.8%)
S.aureas	1	3	8	12(18.7%)
E.coli	1	3	6	10(15.6%)
Klebsiella	_	3	1	4(6.2%)
Enterobacter sp.	1	_	2	3(4.6%)
Streptococcus B hemolytic	_	1	_	1(1.5%)
*Others	_	_	4	4(6.2%)

*Acinetobacter baumanii, Pseudomonas sp. , Aerococcus viridans, Stenotrophomonas maltophilia

Organisms	No. of isolates	%		
Gram positive bacteria	13	20.3		
Gram negative bacteria	51	79.6		

Table (3): Distribution of Bacterial Pathogens

Resistance patterns of the most frequent isolates:

Antimicrobial susceptibility data are presented in table - 4. Overall, 60% of Salmonella typhi were resistant to Amoxicillin and Erythromycin was 58%. Cephalexin - resistant E.coli in 70% of the isolates and Gentamycin-resistant Klebsiella occurred in 75% of the isolates.

Mieneensen	Antimianahial	Total No. of isolates	0/ of register as
Microorganism	Antimicrobiai	tested	% of resistance
	Ampicillin	30	26.6
	Cefotaxime	30	0.0
S = 1 11 = 1. :	Augmentin	30	20.0
Saimoneila typni	Trimethoprim	30	30.0
	Ampiclox	30	20.0
	Amoxicillin	30	60.0
Staph.aureus	Ampicillin Augmentin	12 12	50.0 0.0
	Augmentin Erytheromycin Amikacin Amoxicillin	12 12 12 12	58.3 0.0 58.3 33.3
E.coli	Ceftriaxone Cephalexin Ciprofloxacin Gentamycin	10 10 10 10	60.0 70.0 20.0 20.0
Klebsiella s.pp	Gentamycin Meropenem Amikacin Ceftriaxone	4 4 4 4	75.0 75.0 75.0 50.0

 Table (4): Resistance Patterns of the most frequent isolates

Interpretive criteria for each antimicrobial tested determined using NCCLS (2000)

-Clinical information

We obtained complete clinical information of 64 individuals with bloodstream infections Table (5). There were 25 males (39%)[5(45%) in 2007, 6 (50%) in 2008 and 14 (34%) in 2009] and 39 female (60%)[6 (54%) in 2007, 6(50%) in 2008 and 27 (65%) in 2009] whose ages ranged from 12 years to 80 years (mean 35.5 years, SD 15.5).

Table (5): Comparison	between patients acco	ording to outcome
-----------------------	-----------------------	-------------------

	2007	2008	2009	Total
	No=11	No=12	No=41	No=64
Age :(SD) range	30.8(10.1)	33.5(12.7)	37.4(17.3)	35.5(15.5)
	16-51	16-54	12-80	12-80
Sex :Female	6(54.5%)	6(50%)	27(65.8%)	39(60.9)
Male	5(45.4%)	6(50%)	14(34.1)	25(39.06%)

The most important predisposing factors for bacteremia are summarized in Table (6). Overall, Medicine were the most common potential predisposing factor 35(54.6%), high percentage was at 2009[25 (60.9%)]. Other potential predisposing factors were: outpatients in 17 (26.5 %), burns 5 patients (7.8%) and in dialysis, neurosurgery and respiratory care unit were 2 (3.1%) for each one.

Vol.6 No.1

2012

	1 0			
	2007	2008	2009	Total
	n=11	n=12	n=41	n=64
Medicine	9(81.8%)	1(8.30%)	25(60.90%)	35(54.60%)
Outpatient	1(9.09%)	6(50.00%)	10(24.30%)	17(26.50%)
Burns	1(9.00%)	3(25.00%)	1(2.40%)	5(7.80%)
Dialysis	0.0%	1(8.30%)	1(2.40%)	2(3.10%)
Neurosurgery	0.0%	1(8.30%)	1(2.40%)	2(3.10%)
Respiratory care unite	0.0%	0.0%	2(4.80%)	2(3.10%)
Central care unite	0.0%	0.0%	1(2.40%)	1(1.50%)

Table (6): Predisposing factors to bloodstream infection

Discussion

In the present study positive blood culture was seen in 70(13.8%) cases. In india [10] has reported 16.4% where as [11,12] have reported 44%,33.9% respectively. This variation might be due to the fact that most of the patients were given the antibiotics before they come to the tertiary care hospital &other reason is that in most of the cases self medication is very common as the medicines are available at the counter. In the concurrent study the incidence of gram positive organisms was 20.3% while 79.6% isolates were gram negative bacilli. It is in accordance with the study of other workers [12]. [11] have reported incidence of *Streptococcus spp* and Staphylococcus spp to be 25 % and gram negative bacilli 15%. But in most of the studies gram negative organisms have taken over the gram positive organisms 9% incidence of *Staphylococcus spp*.have been reported by [13]. Salmonella typhi was isolated in 46.8 % of cases where as it has been reported to be 61.5% in the other studies [14]. While [15] has reported it to be 59% of all blood stream infections. E.coli was isolated from 15.6% of the cases. While [13] has reported it to be 14.4% Klebsiella isolation was 6.2% in consistent with the study of [2] who has reported it to be 5.7% which is in contrast to other studies who have reported it to be 25.8% [13]. Enterobacter was isolated in 4.6% in consistent with the study of [16] who was reported it to be 3.9%. The acquisition of blood stream infections was 8.5% through these three years. was also shifting from apredominantly nosoncomial origin to an increasing frequent community acquisition [17]. This is probably due to shorter period of hospital stay even in severely ill patients [18].

Amongst the *Salmonella typhi* isolates maximum resistance was seen with Amoxicillin 60% and Trimethoprim 30%, but was seen susceptible to Cefotaxime. Cephalosporins are considered to be the drug of choice in treatment of *salmonella* bacteremia [19,20]. An increased Ampicillin and Trimethoprim resistance of 86%, 95% respectively was also reported by [15]. *Staphylococcus aureus* was generally highly susceptible to Augmentin and Amikacin but resistant to Amoxicillin and Erythromycin 58%. [2] reported that *Staphylococcus aureus* and *Streptococcus* maximum resistance was seen with Ampicillin 74.6% and Erythromycin 69.6%. Maximum resistance was seen against Cephalexin 70%, Ceftriaxone 60% for *E.coli* isolates and Gentamycin 75%, Amikacin 75% for *Klebsiella sp.* Most of the gram negative bacilli were multi drug resistant 71%. Maximum resistance was observed with Ampicillin 86.1%, Cephalexin 68.07% [2]. These resistances are

commonly mediated by extended-spectrum β -lactmases in *E.coli* and *Klebsiella spp* [4] clinical data obtaind in this study showed anon- Surprising age and Sex distribution of patient with blood stream infections. Bacteremia can occur in patients of any age group, except children because no peadiatric unit in AL-kindi Hospital. The appearance of population groups susceptible to this type of infection, such as Medicin, Outpatient and Burns. So it is concluded that septicemia is an important cause of morbidity and mortality. The retrospective study conducted showed both gram positive and gram negative bacteria were responsible for blood stream infections. Most of the strains were multi drug resistant. To bring down the incidence of bloodstream infections rational and judicious use of antibiotics is essential according to the antibiotic resistance pattern of that area.

References

- 1. Forbes BA, Sahm DF and Weissfeld AS. (2002). Bailey and Scott's Diagnostic Microbiology: Atextbook for isolation and identification of pathogenic microorganisms, 11th ed., the Mosby company, St. Louis:378-422.
- **2.** Arora U., Devi P. (2007). Bacterial profile of Blood Stream Infections and Antibiotic resistance pattern of Isolates. JK science, vol.9 No.2, April-June.
- **3.** Pfaller M.A., Jones R.N., Doern G.V., Sader H.S., Kugler K.C., Beach M.L.(1999). Survey of Bloodstream infection Attributable to Gram-Positive Cocci Frequency of Occurrence and Antimicrobial susceptibility of Isolates collected in 1997 in the United States, Canada, and Latin America from the SENTRY Antimicrobial Surveillance program. Diagn. microbial. Infect. Dis. 33:283-297.
- 4. Diekema DJ, Pfaller MA, Johnes RN, Doern gv, Winokur PL, Gales AC, Sader HS, Kugler K, Beach M. (1999). Survey of bloodstream infections due to gram_negative bacilli: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada and Latin America for the SENTRY Antimicrobial surveillance program, 1997. Clin Infect Dis.sep; 29(3):595-607.
- **5.** Köseoglu Ö., kocagöz S., Gur D., Akova. M. (2001). Nosocomial bloodstream infections in a Turkish university hospital: study of Gram negative bacilli and their sensitivity Patterns. June; 17(6):477-481.
- **6.** Gaynes R (2001). Feeding back surveillance data to prevent hospital acquired infection. Emerg infect Dis; 7:295-298.
- **7.** Haley R. (1985).The efficacy of infection control programs in preventing nosocomial infections in US hospitals. Am. J. Epidemiol; 121:182-205.
- 8. Colle JG Mile RS, Wattb. (1996).Test for identification of bacteria In: Mackie and McCartney Practical Medical Microbiology. Collee JG, Fraser AG, Marimon BP, Simmon A; 14th Edn, Churchill Livingstone, New York; 131-149.
- **9.** National committee for Clinical Laboratory standard performance standards for antimicrobial disc susceptibility tests Approved standard 7th ed villanova, PA:Nccls; (2000); 20(1):M2-A7.

Medical Microbiology. 20(3):156-159.

- **10.** Roy I, Jain A, Kumar M, Agrwal SK (2002): Bacteriology of Neonatal Septicaemia in a Tertiary Care Hospital of Northeren India. Indian Journal of
- **11.** Khanal B, Harish BN, Sethuraman KR, Srinivasan S. (2002). Infective endocarditis:Report of prospective study in an Indian hospital Trop Doct;32:83-5.
- **12.** Sharma M,Goel N, Chaudhary U Aggarwal R, Arora DR (2002). Bacteraemia in children. Indian J pediatr; 69:1029-32.
- **13.** Surinder K., Meher R., Shalini V., Sharma VK (2004). Changing face of Septicaemia and increasing drug resistance in blood isolates. Indian J Pathol Microbiol, vol. 47, NO3:441-446.
- Rodriguez M., Diego ID, and Mendoza C. (1998). Extraintestinal salmonellosis in General Hospital (1991-1996): Relationships between *Salmonella* Genomic Groups and Clinical Presentations. J Clin Microbiol. November;36(11):3291-3296.
- **15.** Vendenberg O, Nyarukweba DZ, Ndeba PM, Hendriksen RS and Barzillay EJ. (2010). Microbiologic and clinical Features of *Salmonella* species Isolated From Bacteremic children in Eastern Democratic Republic of Congo. Pediatr Infect Dis J.Jan 25.
- 16. Bouza E., Molina P.J and Munoz P. (1999). Bloodstream Infections in Europe. European Study Group on Nosocomial infections. Clin Microbiol Infect Dis.5:2S1-2S12.
- **17.** Weinstein MP, Towns ML, Quartey SM, *et al* (1997). The clinical significance of positive Blood cultures in the 1990s: Aprospective comprehensive Evaluation of the Microbiology, Epidemiology, and Outcome of Bacteremia and Fungemia in Adults. Clin infect. Dis.; 24:584-602.
- **18.** Ribas RM, Freitas C, Gontijo PP. (2007). Nosocomial bloodstream infections :organisms, risk factors and resistant phenotypes in the Brazilian Journal of infections Diseases.Vol.11 no.3 Salvador June.
- **19.** Preveden T, Knezevic K, Brkic S, Jelesic Z. (2001). *Salmonella* bacteremia. Jul-Aug; 54(7-8):367-70.
- **20.** Hill PC, Onyeama CO, Ikumapayi UN, Secka O and Ameyaw S. (2007). Bacteraemia in patients admitted to an urban hospital in West Africa. BMC Infect. Dis. Jan 26; 7:2.